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Wind forcing in the equilibrium range of
wind-wave spectra
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A new analytical model is developed for the equilibrium range of the spectrum of
wind-forced ocean surface gravity waves. We first show that the existing model of
Phillips (1985) does not satisfy overall momentum conservation at high winds. This
constraint is satisfied by applying recent understanding of the wind forcing of waves.
Waves exert a drag on the air flow so that they support a fraction of the applied wind
stress, which thus leaves a smaller turbulent stress near the surface to force growth
of shorter wavelength waves. Formulation of the momentum budget accounting for
this sheltering constrains the overall conservation of momentum and leads to a local
turbulent stress that reduces as the wavenumber increases. This local turbulent stress
then forces wind-induced wave growth. Following Phillips (1985), the wind sea is
taken to be a superposition of linear waves, and equilibrium is maintained by a
balance between the three sources and sinks of wave action.

These assumptions lead to analytical formulae for the local turbulent stress and the
degree of saturation, B(k), of waves in the equilibrium range. We identify a sheltering
wavenumber, ks, over which the local turbulent stress is significantly reduced by longer
waves. At low wavenumbers or at low winds, when k � ks, the sheltering is weak
and B(k) has a similar form to the model of Phillips (1985). At higher wavenumbers
or at higher winds, k � ks, B(k) makes a transition to being proportional to k0. The
additional constraint of conservation of momentum also yields a formula for the
coefficient that appears in the solution for B(k). The spectra for mature seas are cal-
culated from the model and are shown to agree with field observations. In particular,
our model predicts more realistic spectral levels toward the high wavenumber limit
compared to the previous model of Phillips (1985).

We suggest that the model may explain the overshoot phenomena observed in the
spectral energy levels as the fetch increases.

1. Introduction
It is well known that, under given wind forcing, the spectra of ocean surface gravity

waves attain an equilibrium state at frequencies much higher than the peak frequency
(e.g. Phillips 1977, p. 140). Knowledge of the equilibrium range of the wave spectrum
is of practical importance since existing numerical wave prediction models cannot
solve right down to the smallest gravity waves. Instead, they resolve explicitly only to
a fixed maximum wavenumber and then patch on to the spectrum a ‘tail’ to represent
the equilibrium range (e.g. Komen et al. 1994, p. 234). Therefore, these models need
to know the solution for the equilibrium range before being integrated.

† Permanent address: Graduate School of Oceanography, University of Rhode Island, Narra-
gansett, RI 02882, USA.
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We begin with a brief review of the observational evidence for an equilibrium range
and of the salient aspects of recent models. This review suggests shortcomings, which
are addressed in this paper.

1.1. Observations of equilibrium spectra

Early observational studies reported that the frequency wave height spectrum Φ(σ) in
the equilibrium range was inversely proportional to the fifth power of the frequency σ

Φ(σ) ∝ g2σ−5, (1.1)

where g is the acceleration due to gravity. Later, the jonswap report (Hasselmann
et al. 1973) indicated that the coefficient of proportionality in (1.1) was a function
of fetch rather than an absolute constant. Toba (1973), on the other hand, proposed
that the wave height spectrum was better represented in the form of

Φ(σ) ∝ u∗gσ−4, (1.2)

where u∗ is the wind friction velocity. This form received further support by other
field observations. Donelan, Hamilton & Hui (1985) proposed a form of the frequency
spectrum that was also proportional to σ−4, but depended on the wave age rather than
the friction velocity. In the mean time, Forristall (1981) reported that in the spectral
range up to the frequency σ ∼ 0.17g/u∗ the frequency spectrum was consistently
proportional to σ−4, while at higher frequencies the inverse fifth power law (∝ σ−5)
seemed to hold.

In the wavenumber domain, the wave height spectrum is defined in terms of the
two-dimensional wavenumber vector k and is expressed as Ψ (k) or Ψ (k, θ), where k
is the magnitude of k and θ is the wave propagation direction. The only observational
study in the wavenumber domain was reported by Banner, Jones & Trinder (1989)
who found the one-dimensional wavenumber wave height spectrum Ψ (k) in the
form of

Ψ (k) =

∫ π/2

−π/2
Ψ (k, θ) dθ ∝ k−4, (1.3)

with the constant of proportionality almost independent of the wind stress. This
form implies a frequency spectrum that is proportional to σ−5 if the linear dispersion
relation is assumed.

In summary, there remain discrepancies in the form of the equilibrium spectra
among different observations. Furthermore, it has become increasingly evident that
the actual relationship between a frequency spectrum and a wavenumber spectrum is
more subtle than that determined by the linear dispersion relation. Possible reasons are
that the frequency spectrum can be modified by Doppler shifting of the shorter waves
by advection by the orbital motion of dominant waves (Kitaigorodskii, Krasitskii &
Zaslavskii 1975; Banner 1990), and because the frequency spectrum of bound higher
harmonics of steep dominant waves may exceed the spectrum of freely propagating
shorter waves (Belcher & Vassilicos 1997).

1.2. Theories of equilibrium spectra

Many models have been proposed to explain the nature and form of the equilibrium
range; but there remain significant gaps in our current knowledge. The evolution of
surface waves is described in terms of the spectral density of wave action, N(k), which
is related to the wave height spectrum, Ψ (k), and the degree of saturation, B(k), by

N(k) =
g

σ
Ψ (k) =

g

σ
k−4B(k) (1.4)
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for surface gravity waves. The wave action density then evolves according to

dN

dt
= −∇k · T (k) + Sw − D, (1.5)

where Sw is the wind input, T (k) is the flux of the wave action by nonlinear wave
interactions (∇k is the gradient operator in k) and D is the dissipation due to wave
breaking. Within the equilibrium range, the sum of the three forcing terms must
vanish. Kitaigorodskii (1983) developed a model that follows from the work of
Hasselmann et al. (1973) and Zakharov & Filonenko (1966) in assuming that within
the equilibrium range both the wind input and the dissipation are negligible. Then,
the nonlinear flux divergence must also vanish to maintain the equilibrium. This
assumption led to a form of the frequency spectrum that is proportional to σ−4.

Phillips (1985) argued that (i) wind-wave generation models suggest that the energy
transfer from wind to waves increases with wavenumber and thus cannot be neglected
at the high wavenumbers in the equilibrium range, and (ii) breaking waves occur at
all scales leading to dissipation of wave action at all wavenumbers. Hence, Phillips
(1985) argued that in the equilibrium range the three input terms to the wave action
conservation equation are all of the same order of magnitude and balance one another.
He further assumed, following Kitaigorodskii (1983), that, in the equilibrium range,
the divergence of the wave action flux is proportional to the cube of the local degree
of saturation

−∇k · T (k) ∝ gk−4B3(k), (1.6)

and that the form of the wind input term is

Sw = βg(k)N(k) = βg(k)
g

σ
k−4B(k), (1.7)

where the wave growth rate, following Plant (1982), is

βg(k, θ) = cβσ
ρau

2∗
ρwc2

cos2p(θ). (1.8)

It follows that the nonlinear interaction term (1.6) and the wind input term (1.7) are
proportional to each other, and that the equilibrium degree of saturation is

B(k, θ) = β cosp(θ)
u∗
c

= β cosp(θ)u∗g−1/2k1/2. (1.9)

Here, c is the phase speed of waves, cβ , p and β are empirical coefficients, which Phillips
took to be constants, and ρa and ρw are densities of air and water, respectively. The
linear dispersion relation has been used to obtain the final form. Hence, according to
this model, B(k) is proportional to k1/2 and u∗. If the wavenumber and frequency are
related through the linear dispersion relation then Phillips showed that the frequency
spectrum takes the form

Φ(σ) = αpu∗gσ−4, (1.10)

(αp is an empirical constant) which is consistent with the form (1.2) proposed by Toba
(1973). We note that (1.9) is not consistent with the data of Banner et al. (1989).

Phillips’ (1985) model enjoys success, but the model is based on the assumption
that the surface wave field is a superposition of small-amplitude sinusoidal waves.
Therefore, it is not likely to be applicable at very high winds when breaking waves are
prevalent. Belcher & Vassilicos (1997) proposed a model with sharp-crested breaking
waves dominating the equilibrium range of the spectra. Their model is based on both
kinematic and dynamical assumptions. The kinematic assumptions are that breaking
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waves are sharp crested (so that slope is discontinuous at the crest) and that their
shape is self-similar regardless of their scale. This assumption of self-similarity implies
that the statistical properties of the breaking waves vary with the scale of the breaking
waves as a power law. Their dynamical assumption is similar to that of Phillips (1985).
The combination of these assumptions leads to an equilibrium wave spectrum of the
form

Ψ (k, θ) = 1
2
(2π)3/2(αΛβΛ)2A0Θ(θ)k−4, (1.11)

where αΛ, βΛ and A0 are coefficients, and Θ(θ) is the angular distribution of breaking
wave crests.

Their study also predicts a frequency spectrum in the form of

Φ(σ) = 2α2
Λβ

2
ΛνA0c0gσ

−4. (1.12)

Here, c0 is the phase speed of the largest breaking waves and ν is a constant. It is
noteworthy that their wavenumber spectrum (proportional to k−4) and their frequency
spectrum (proportional to σ−4) cannot be obtained with the linear dispersion relation
between k and σ. This is explained by their model because, as the wavenumber k
increases, the wavenumber spectrum receives contributions from smaller and smaller
breaking waves, whereas the frequency spectrum is dominated through the whole of
the equilibrium range by the bound harmonics of the largest breaking waves.

The two models reviewed here can be considered as two extremes. Phillips (1985)
(and all earlier works) assumes that all waves are freely propagating sine waves of
small amplitude. Therefore, we expect this model to be valid at the weak wind limit.
On the other hand, Belcher & Vassilicos (1997) assume that all waves are sharp-
crested breaking waves; an assumption that we expect to be valid only at the strong
wind limit. Since the two models predict different forms of the wavenumber spectrum,
i.e. k−7/2 by Phillips (1985) and k−4 by Belcher & Vassilicos (1997), the question arises
as to whether there is a smooth transition between the two. And if there is, what
parameters determine when and where this transition takes place? The aim of this
paper is to answer these questions.

1.3. Momentum budget in the equilibrium range

It is known that, particularly in high winds, surface waves support a major part of
the total wind stress through the form drag at higher wavenumbers (e.g. Banner &
Peirson 1998). Therefore, the waves in the equilibrium range are expected to support
a significant portion of the total wind stress. It is then of interest to consider the total
budget of momentum and, in particular, the relation between the total momentum
flux from wind and the momentum flux into the waves.

Consider the momentum budget of the model of Phillips (1985). Using his model
results, we examine the wind stress supported by a particular wave component
within the equilibrium range. Following, for example, Makin, Kudryavtsev & Mas-
tenbroek (1995), the component of the stress in the mean wind direction supported
by wavenumbers between k and k + dk, namely dτw , is expressed as

dτw = βg(k, θ)ρwσΨ (k) cos θ dk = cββρau
3
∗g
−1/2k−3/2 cos3p+1(θ) dk, (1.13)

using (1.8) and (1.9). Hence, the momentum flux is proportional to u3∗. On the other
hand, the total wind stress is proportional to u2∗ by definition. This means that as
the wind friction velocity u∗ increases, the same wave component must support an
increasing proportion of the total stress. Since the equilibrium range itself generally
widens as the wind speed increases, the momentum flux into the waves in the
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entire equilibrium range increases faster than u3∗. Thus, the model of Phillips (1985)
must break down beyond a critical wind stress because it violates conservation of
momentum: the momentum flux into the equilibrium range exceeds the stress supplied
by the wind. Clearly, momentum conservation adds an additional constraint which is
especially important at high wind speeds. The formulation of this constraint and its
consequences are the subject of this paper.

1.4. A new model of the equilibrium range

We use here new understanding of wind forcing of waves to develop an analytical
model of the equilibrium range that satisfies overall momentum conservation. The key
ingredient of our model is the effect of sheltering, whereby waves remove momentum
from wind thus leaving a smaller stress to force growth of the shorter waves. This
idea of sheltering was introduced by Janssen (1982) and discussed by Janssen (1989,
1991) and Jenkins (1992) in the context of numerical wave forecast models. This
process was incorporated into a model of the roughness of the sea surface developed
by Makin et al. (1995) and Makin & Kudryavtsev (1999). Kudryavtsev, Makin &
Chapron (1999) develop a sophisticated model for short-gravity and capillary waves
that accounts for sheltering. Their focus was the capillary waves and so their model
also parameterizes many other processes, which meant their model required numerical
solution. Here, we focus on the gravity waves in the equilibrium range. The resulting
model is then amenable to analytical solution, which leads to fresh insights into the
role of sheltering.

Evidence of the sheltering effect has recently been reported by Chen & Belcher
(2000), who show that wind-forced growth of short wind waves in the presence of a
long paddle-generated wave is reduced by sheltering by the paddle wave. In addition,
Makin & Kudryavtsev (1999) and Belcher (1999) show how the concept of waves
sheltering themselves yields a nonlinear correction to the growth rate that agrees
with computations. These studies offer evidence that the concept of sheltering can be
quantified reliably.

In this study, we focus on the components of the wind sea that propagate as nearly
linear waves, and which therefore can be treated as a superposition of propagating
sinusoidal waves. The contribution to the spectrum from highly nonlinear waves that
are breaking is considered in a companion paper (Belcher & Hara 2002). Hence, in
§ 2 of this paper, following Markin et al. (1995), we apply the idea of sheltering to a
spectrum of waves, which constrains overall momentum to be conserved. Following
Phillips (1985), in § 3 a dynamical balance is imposed between the wind input, the
nonlinear wave interaction, and dissipation by breaking for waves in the equilibrium
range. This yields a new analytical form of the equilibrium spectrum associated with
freely propagating sinusoidal water waves. The model is compared with previous
observations of both the wavenumber spectrum and the frequency spectrum in § 4.
Finally, in § 5 the results are summarized and there is further discussion.

2. Wind forcing in a spectrum of waves
Consider waves generated by a steady uni-directional wind, so that the wave

spectrum is symmetric about the wind direction θ = 0. Then, following Makin et al.
(1995), the total wind stress τtot is expressed as the sum of the wave induced stress τw
and the turbulent stress τt,

τtot(z) = ρau
2
∗ = τw(z) + τt(z), (2.1)
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and all three components of the stress are collinear. Here, z is a vertical coordinate
measured (upward) from the instantaneous water surface. Very close to the water
surface, within the viscous sublayer, there is also a viscous contribution to the stress.
Since the depth of the viscous sublayer is so much smaller than the scale of waves
considered in this study, τt(z = 0), the turbulent stress just above the viscous layer,
is equal to the stress supported by viscosity actually at the water surface and so
the viscous stress does not need to be considered explicitly (Belcher, Harris & Street
1994). If the waves were generated by winds with non-uniform directions, then the
three components of the stress in (2.1) would have to be treated as vector quantities.
Such conditions are not considered further here.

Under stationary and homogeneous conditions the total wind stress τtot (and the
friction velocity u∗ defined such that τtot = ρau

2∗) is constant with height in the lower
part of the atmospheric boundary layer. However, both τw and τt vary with height.
If the surface waves have low slope and propagate according to the linear dispersion
relation, then the total wave-induced stress caused by the spectrum of waves is just
the sum of the contributions from each Fourier wave component. Hence, according
to Makin et al. (1995), the wave-induced stress actually at the surface becomes

τw(0) =

∫ ∞
0

∫ π/2

−π/2
βg(k, θ)ρwσΨ (k, θ) cos θ dθ k dk. (2.2)

(The contribution to the wave-induced stress from waves propagating against wind
|θ| > 1

2
π is negligible because the energy in these components is so small. Therefore,

the integration in θ spans − 1
2
π to 1

2
π only.)

According to the analysis of Belcher & Hunt (1993) the wave induced stress, τw ,
associated with waves of wavenumber k decays across the inner region, which has
depth L(k), with kL � 1. Makin et al. (1995) and Makin & Kudryavtsev (1999)
therefore introduce a function F(k, z) of the wave-induced stress to represent this
decay such that

F(k, z) = 1(z = 0), F(k, z) = 0 (z � L(k)). (2.3)

The wave-induced stress due to a spectrum of waves then varies with height according
to

τw(z) =

∫ ∞
0

∫ π/2

−π/2
βg(k, θ)ρwσΨ (k, θ)F(k, z) cos θ dθ k dk. (2.4)

Belcher & Hunt (1993) show that the growth rate βg(k, θ) of a particular wave scale
is determined primarily by the turbulent stress inside the corresponding inner region.
In addition Belcher (1999) and Makin & Kudryavtsev (1999) show that the growth
rate is determined by the local turbulent stress, denoted by τlt(k) = ρa[u

l∗(k)]2. Here,
following Makin et al. (1995), we take this to be the turbulent stress τt evaluated at
the height comparable to the depth of the inner region, i.e.

τlt(k) = τt(z = L−(k))

= τtot − τw(z = L−(k))

= τtot −
∫ ∞

0

∫ π/2

−π/2
βg(k

′, θ)ρwσΨ (k′, θ)F(k′, z = L−(k)) cos θ dθ k′ dk′, (2.5)

where z = L− is evaluated just below z = L. Makin et al. (1995) show that sufficiently
accurate results are obtained if the decay function F(k, z) is approximated by a step
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function, namely

F(k, z) = 1(z 6 L(k)), F(k, z) = 0 (z > L(k)). (2.6)

The local turbulent stress then becomes

τlt(k) = τtot −
∫ k

0

∫ π/2

−π/2
βg(k

′, θ)ρwσΨ (k′, θ) cos θ dθ k′ dk′

= τt(0) +

∫ ∞
k

∫ π/2

−π/2
βg(k

′, θ)ρwσΨ (k′, θ) cos θ dθ k′ dk′. (2.7)

Hence, the local value of the turbulent stress, which acts to make waves of wavenum-
ber k grow, is the total stress minus the wave-induced stress associated with waves
with wavenumber smaller than k.

Following Makin & Mastenbroek (1996), Belcher (1999) and Makin & Kudryavtsev
(1999) the growth rate, βg , of waves of wavenumber k is then

βg(k, θ) = cβσ
ρa[u

l∗(k)]2

ρwc2
h(θ). (2.8)

Phillips (1985) used a similar form for the growth rate (see his equation 1.8), but he
used τtot in place of ρa[u

l∗(k)]2, which leads to his results violating overall momentum
conservation, as explained in § 1.3. When the reduced local stress is correctly used in
the formula for wave growth, then momentum is conserved overall.

3. Determination of the wave spectrum in the equilibrium range
For definiteness, suppose that the equilibrium range is established for wavenumbers

in the range k0 < k < k1. For waves in the equilibrium range, the local turbulent
stress obtained from (2.7) rewritten in terms of the saturation spectrum is

ρa[u
l
∗(k)]

2 = ρa[u∗1]2 +

∫ k1

k

∫ π/2

−π/2
βg(k

′, θ)ρwσk
′−4
B(k′, θ) cos θ dθ k′ dk′

= ρa[u∗0]2 −
∫ k

k0

∫ π/2

−π/2
βg(k

′, θ)ρwσk
′−4
B(k′, θ) cos θ dθ k′ dk′ (3.1)

(cf. Makin & Kudryavtsev 1999). Here, ρa[u∗0]2 is the total stress minus the wave-
induced stress supported by wavenumbers below k0, and ρa[u∗1]2 is the sum of the
viscous stress (turbulent stress just outside the viscous sublayer) and the wave-induced
stress supported by wavenumbers above k1.

Following Phillips (1985), we assume that in the equilibrium range of the wavenum-
ber spectrum the three sources in the wave action equation, (1.5), are in balance and
are proportional to one another:

−∇k · T (k) + Sw − D = 0 with |∇k · T (k)| ∝ |Sw| ∝ |D|. (3.2)

This assumption is discussed further in § 3.4. The gain of energy by resonant wave–
wave interactions at a particular wavelength is proportional to the cube of the res-
onantly interacting waves, and so it is further assumed, again following Kitaigorodskii
(1983) and Phillips (1985), that the divergence of the wave action flux associated with
resonant wave–wave interactions scales in the equilibrium range as the cube of the
local degree of saturation, B(k), namely

−∇k · T (k) = α′gk−4B3(k), (3.3)
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where α′ is a dimensionless coefficient. Then, the proportionality of the three forcing
terms allows us to set

Sw = αgk−4B3(k), (3.4)

−D = α′′gk−4B3(k), (3.5)

where α and α′′ are dimensionless coefficients, whose magnitude is comparable to that
of α, and satisfy

α+ α′ + α′′ = 0. (3.6)

In the subsequent analysis, we will determine the coefficient α and hence also an
explicit expression for the wind input term. However, the coefficients α′ and α′′ will
not need to be determined to calculate the spectra. Hence, complete solutions for the
nonlinear transfer and dissipation will not be found here.

Since the wind input of wave action is written

Sw = βg(k)g1/2k−9/2B(k), (3.7)

it follows from (3.4) that

βg(k)g1/2k−9/2B(k) = αgk−4B3(k), (3.8)

and the saturation spectrum in the equilibrium range takes the form

B(k) =
[
α−1βg(k)g−1/2k−1/2

]1/2
. (3.9)

This solution shows a resemblance to the solution obtained by Kudryavtsev et al.
(1999) in their equation (44). However, their solution was obtained from a different
dynamical balance, and contains an empirical constant, αg . Here, in contrast, α is a
coefficient that is independent of k, which, as shown in § 4, is determined from the
external conditions by the constraint that overall momentum is conserved.

Equation (3.9) gives the saturation in terms of the growth rate, βg , which in turn
depends on ul∗ and hence on k. To find the variation of B(k) with k it is therefore
necessary to calculate the variation of ul∗ with k. This is done next.

3.1. Calculation of the local turbulent stress

If (2.8) and (3.9) are substituted into the equation for overall momentum conservation,
(3.1), then

[ul∗(k)]
2 = [u∗1]2 +

∫ k1

k

(
ρa

ρw

)1/2

cβ
3/2α−1/2cθ[u

l
∗(k
′)]3g−1/2k′−1/2 dk′

= [u∗0]2 −
∫ k

k0

(
ρa

ρw

)1/2

cβ
3/2α−1/2cθ[u

l
∗(k
′)]3g−1/2k′−1/2 dk′, (3.10)

where

cθ =

∫ π/2

−π/2
[h(θ)]3/2 cos θ dθ. (3.11)

Equation (3.10) is an integral equation for ul∗(k), which can be solved analytically by
first differentiating with respect to k

2ul∗
dul∗
dk

= −c1(u
l
∗)

3k−1/2, (3.12)
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where

c1 =

(
ρa

ρw

)1/2

cβ
3/2α−1/2cθg

−1/2. (3.13)

The solution is

ul∗ = (c1k
1/2 + c2)

−1 (3.14)

where c2 is the integration constant that is independent of k. If this solution is
substituted into (3.10), the two constants are found to be related to stress partition
across the equilibrium range by

c1 =

(
1

u∗1
− 1

u∗0

)(
k

1/2
1 − k1/2

0

)−1

, (3.15)

c2 =

(
−k

1/2
0

u∗1
+
k

1/2
1

u∗0

)(
k

1/2
1 − k1/2

0

)−1

. (3.16)

Here, the coefficients c1 and c2 are both positive for realistic oceanic conditions, as
shown in the next section. The solution is written more economically on definition of
the sheltering wavenumber, namely

k1/2
s =

c2

c1

=
−k1/2

0 u∗0 + k
1/2
1 u∗1

u∗0 − u∗1 . (3.17)

The local friction velocity can then be written

ul∗(k) =
2u∗s

1 +
(
k/ks

)1/2
, (3.18)

where the local friction velocity at the sheltering wavenumber is given by

u∗s =

(
k

1/2
1 − k1/2

0

)
u∗1u∗0

2
(
k

1/2
1 u∗1 − k1/2

0 u∗0
) . (3.19)

The sheltering wavenumber, ks, represents the wavenumber at which the local friction
velocity begins to be affected by sheltering by the longer wavelength waves. The value
of ks is uniquely determined once the wavenumber range of the equilibrium region is
established, i.e. once k0, k1 and the ratio u∗1/u∗0 are specified. Some practical estimates
are made in the next section.

Figure 1 shows the variation of ul∗(k), normalized on u∗s, with normalized wavenum-
ber k/ks. This figure illustrates how the local friction velocity decreases as the
wavenumber increases. For k � ks, u

l∗ asymptotically approaches a constant (= 2u∗s),
i.e. waves in this wavenumber range support only a small portion of the total wind
stress. On the other hand, for k � ks u

l∗ decreases as k−1/2, i.e. the waves of smaller
wavenumbers are significantly affected by sheltering.

3.2. The saturation spectrum

Now that the variation of the local friction velocity with k has been obtained, return to
calculation of the saturation spectrum, B(k). The dimensionless coefficient α, originally
defined in (3.4), is uniquely determined from (3.13) and (3.15):

α = 4
ρa

ρw
c3
βc

2
θ

(
u∗s
cs

)2

, (3.20)
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Figure 1. Normalized local friction velocity ul∗(k)/u∗s versus k/ks.

where cs = (g/ks)
1/2. Introducing (3.18), (3.20) and (2.8) into (3.9), we obtain the

degree of saturation

B(k, θ) =
1

cβcθ

[
1 +

(
ks

k

)1/2
]−1

h(θ)1/2. (3.21)

Hence, B(k) is completely determined. We have been able to determine the magnitude
of B(k) because α is completely determined by the constraint that total momentum
is conserved. In contrast, Phillips (1985) did not impose this constraint and so his
expression for the degree of saturation contains an unknown multiplicative factor.

Integrating the saturation spectrum over all angles, the omni-directional degree of
saturation is obtained:

B(k) =
1

cβc
′
θ

[
1 +

(
ks

k

)1/2
]−1

, (3.22)

where

1

c′θ
=

1

cθ

∫ π/2

−π/2
h(θ)1/2 dθ =

∫ π/2

−π/2
h(θ)1/2 dθ∫ π/2

−π/2
h(θ)3/2 cos θ dθ

. (3.23)

Notice how B(k) depends on only three parameters, cβ , c′θ and ks. The first two
come from the parameterization of the wind-induced growth rate (2.8), whereas ks
is determined by the extent of the equilibrium range (k0 and k1) and the stress
partition, expressed in the ratio u∗1/u∗0. It is particularly noteworthy that B(k) does
not explicitly depend on the total wind stress, ρau

2∗. Instead, it is determined by how
the total wind stress is partitioned into three contributions, namely: the wave-induced
stress supported by waves in the peak of the wave spectrum k < k0; the wave-induced
stress supported by waves in the equilibrium range (k0 < k < k1); the remaining stress
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Figure 2. Degree of saturation B(k) versus k/ks.

that is the sum of the wave-induced stress supported by very short waves k > k1 and
the viscous stress.

Figure 2 shows B(k) versus k/ks. Here, we have set cβ = 40 after Plant (1982) and
c′θ = 3

16
π corresponding to h(θ) = cos2 θ. There are two asymptotic limits of B(k).

First, if k � ks,

B(k) ∼ 1

cβc
′
θ

(
k

ks

)1/2

, (3.24)

which has the dependence on k obtained by Phillips (1985). This agreement is to be
expected because ul∗ is almost constant in this range, and so the growth rate used here
relaxes to the same form as used by Phillips (1985). The saturation spectrum, B(k),
calculated here is, however, an improvement over the formula calculated by Phillips
(1985) because our model gives the absolute magnitude of B(k).

Secondly, in the limit k � ks,

B(k) ∼ 1

cβc
′
θ

, (3.25)

and so B(k) is independent of wavenumber. This result is consistent with Belcher &
Vassilicos (1997) who have also predicted that B(k) is independent of k, albeit from
very different arguments.

It is of interest to examine how our model result of B(k) depends on the directional
spreading of the wavenumber spectrum. If the directionality of the growth rate h(θ)
(or the directionality of the resulting spectrum h(θ)1/2) is independent of k throughout
the equilibrium range, the result is simply modified by a constant factor c′θ for different
choices of h(θ). Donelan et al. (1985) find that the directional spreading is roughly
independent of frequency and is best parameterized by sech2(1.24θ) at frequencies
above 1.6 times the peak frequency, which thus includes the equilibrium range. This
function falls roughly between cos θ and cos3 θ. If h(θ) is chosen to be cos2 θ, cos4 θ
and cos6 θ, corresponding to the directional spreading of the wavenumber spectrum
of cos θ, cos2 θ and cos3 θ, c′θ is calculated to be 3π/16 ∼= 0.5890, 64/35π ∼= 0.5821 and
189π/1024 ∼= 0.5798, respectively. Hence, our result of B(k) is surprisingly insensitive
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to the choice of h(θ). As the directional spreading becomes narrower, the overall level
of B(k, θ) becomes higher to support the same amount of momentum. However, if
B(k, θ) is integrated in all θ, the resulting B(k) depends on the directional spreading
very weakly since the narrowness of the directional spreading offsets the increased
height of B(k, θ) during the integration. If the directional spreading of the spectrum
varies with k over the equilibrium range, the integral equation (3.10) must be solved
numerically. Such a case is examined in Appendix A. Again, the values of B(k) are
found to be surprisingly insensitive to the directional spreading (see figure 5).

The results of the model developed by Kudryavtsev et al. (1999) for short waves
shown in their figure 3(b) appear to show the transition from k1/2 to k0 as k increases,
which is thus qualitatively consistent with the present model. This agreement is
encouraging since the model of Kudryavtsev et al. (1999) includes the effect of
sheltering in wind forcing. The analytical model developed here has the advantage
that the sheltering wavenumber emerges naturally as a key parameter, and hence the
role of sheltering is clear.

3.3. Frequency spectrum

Consider now the corresponding frequency spectrum. To be consistent with the argu-
ment so far, each wavenumber component propagates at the phase speed determined
by the linear dispersion relation,

c = σ/k = (g/k)1/2. (3.26)

Effects of mean currents and Doppler shift in the wave frequencies by the advection of
shorter waves by the orbital motion of dominant waves are both neglected. The omni-
directional degree of saturation, given in (3.22), can be converted to the frequency
spectrum using the definition that the frequency spectrum has the same energy in a
frequency band as the wavenumber spectrum has in a wavenumber band, namely,

Φ(σ)dσ = Ψ (k)k dk = B(k)k−3 dk, (3.27)

and the dispersion relation

dσ

dk
= cg = 1

2
c = 1

2
g1/2k−1/2. (3.28)

This procedure yields the frequency spectrum:

Φ(σ) =
2

cβc
′
θ

g2σ−5
[
1 +

(σs
σ

)]−1

, (3.29)

where σs = (gks)
1/2. The frequency spectrum is therefore proportional to σ−4 for σ �

σs, which, as expected, has the same variation as Phillips (1985), and is proportional
to σ−5 for σ � σs. Again, it is noteworthy that the present approach yields explicit
values for the coefficients in terms of measurable quantities.

3.4. Discussion

The solution for the spectra in the equilibrium range is now complete and it is useful
to review some of the assumptions of the model. First, we have assumed that the sum
of the three source terms in the action balance equation is zero in the equilibrium
range. This assumption is strictly valid only if the spectrum is fully developed and
the fetch is unlimited. In practice, however, the assumption is approximately valid,
and a local equilibrium is formed, if the sum of the three forcing terms is much
smaller than the magnitude of each forcing term, that is, if the natural time or space
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scale of spectral growth due to wind forcing (or spectral decay due to breaking) is
much smaller than the actual time or space scale of the spectral variation. The time
scale for the wind forcing reduces rapidly as the wavenumber increases. Therefore,
even if the spectrum near the peak is still developing, we expect there to be a
high wavenumber range of the spectrum over which our theory is approximately
applicable.

Secondly, we assumed following Phillips (1985) that the three terms in the action
balance equation are proportional to one another. Phillips starts by assuming that all
three terms in the balance are of comparable importance and then assumes that the
equilibrium range is scale invariant, i.e. the only wavenumber scale in the equilibrium
range is k itself. Belcher & Vassilicos (1997) show that this implies that each term in
the action balance must vary with k as a simple power law, and hence the three terms
are proportional to one another. Now, scale invariance means that there is no special
wavenumber in the equilibrium range, but the model developed in § 3 does produce
a special wavenumber, namely, the sheltering wavenumber ks. Hence, it appears that
the model does not produce a scale invariant solution. This finding calls into question
the original motivation for taking the three source terms proportional to one another.
However, in the limits of k/ks becoming small and large (but still well within the
equilibrium range) the solutions become scale invariant and the procedure is formally
valid. In the absence of a better argument, we assume as a working hypothesis that
this proportionality extends throughout the equilibrium range. The main justification
offered now is in the comparison between the model and measurements.

4. Comparison with observations of mature seas
The saturation spectrum, B(k), obtained in § 3 can be evaluated once the sheltering

wavenumber ks has been calculated. This requires information about the upper and
lower wavenumber limits of the equilibrium range, namely k0 and k1, and also the
wind stress partitioning, namely the ratio of u∗1 to u∗0. Such information is not readily
available from field observations, and so it is necessary to make further assumptions
in order to compare the model with previous observations. Here, we use a simple
model with the following two assumptions.

(i) Assume that the wind sea is mature so that it is near to an equilibrium with the
local winds. In these situations, very low wavenumber waves travel faster than the wind
and do not gain energy from the wind (Cohen & Belcher 1999). Hence, these waves
do not support wave-induced stress. The cutoff occurs at u∗/c = u∗k1/2/g1/2 ≈ 0.07
(Plant 1982). We use this criterion to define k0 = 0.0049g/u2∗. The wave-induced stress
is then small for wavenumbers below k0 and so the local stress at wavenumber k0 is
equal to the total wind stress.

(ii) The upper bound k1 is simply set to the value 100 rad m−1. Previous observa-
tions by Jähne & Riemer (1990), Hara et al. (1998), and others and the modelling
of Kudryavtsev et al. (1999) all show that the wavenumber spectrum behaves very
differently above and below this wavenumber, suggesting that the effects of surface
tension and/or viscosity become significant above this wavenumber. In addition, as-
sume here that the wind stress supported by the gravity–capillary and capillary waves
that have higher wavenumber k > k1 is negligible. Then τt(0) = ρa[u∗1]2 which both
equal the viscous stress at the surface, τν .

With these assumptions, the local friction velocity at the bounds of the equilibrium
range can be written

ρa[u∗0]2 = τtot ≡ ρacdU2
10, ρa[u∗1]2 = τν ≡ ρactU2

10. (4.1)
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Figure 3. Relationship between u∗0 and u∗1 for mature seas. Solid and dashed lines indicate the
upper and lower bounds based on Banner & Peirson (1998). Dashed lines indicate extended part
of the estimates outside the wind speed range given by Banner & Peirson (1998). Dash-dot line
corresponds to u∗0 = u∗1.

The drag coefficients cd and ct are evaluated here using the correlations obtained
recently by Banner & Peirson (1998), who measured both the total stress, τtot, and the
stress supported by viscosity, τν . Based on both their own laboratory data and also
field observations of mature waves, their best estimates were

cd = (U10 × 0.66 + 8± 1)× 10−4, ct = (−U10 × 0.5 + 11± 1)× 10−4, (4.2)

when U10 (the wind speed at 10 m above the mean sea level, measured in the unit
of m s−1) lay between 6 and 14. Note that Banner & Peirson (1998) gave upper and
lower bounds of the drag coefficients rather than specific values for any given U10.

By introducing (4.2) into (4.1), we may determine the possible range of the combi-
nation of (u∗0, u∗1) for a given U10. By superposing such results for all U10, we may
determine the overall range of (u∗0, u∗1) allowed by the correlations of Banner &
Peirson (1998), namely (4.2). Thus, the upper and lower bounds of u∗1 are determined
for a given u∗0. The results are shown in figure 3. Although (4.2) were obtained
for 6 < U10 < 14 m s−1, the same form has been applied to the extended range of
4.5 < U10 < 19 m s−1, and the extensions are distinguished by dashed lines. It is
evident that u∗1 is smaller than u∗0, which shows that there is some sheltering at all
values of u∗0. At lower wind stress, u∗1 monotonically increases with u∗0. However, at
high wind stress, u∗1 ceases to increase and may even decrease with u∗0, suggesting
that the sheltering effect becomes very strong.

We next calculate the upper and lower bounds of the sheltering wavenumber ks for
a given u∗ = u∗0, using k0 = 0.0049g/u2∗, k1 = 100 rad m−1, as described above, and the
values of u∗1 for given u∗0 from the upper and lower bounds of figure 3. The results
are shown in figure 4. Clearly, ks decreases monotonically as the wind friction velocity
increases and the definition of ks remains valid over the whole range of friction velocity
examined (because the sign of c2 in (3.16) remains positive). For u∗ < 0.5 m s−1, ks is
larger than k1 = 100 rad m−1 and so the sheltering is weak. Nevertheless, the value
of ks remains significant in determining the coefficients multiplying the spectra. For
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Figure 4. Upper and lower bounds of sheltering wavenumber ks versus wind friction velocity u∗.
Dashed lines indicate extended part of the estimates outside the wind speed range given by Banner
& Peirson (1998).
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Figure 5. Upper and lower bounds of degree of saturation B(k) versus k. Numbers on lines in the
figure correspond to values of u∗ in m s−1. Hence, the two lines with the same number indicate the
spread resulting from the spread in the correlation of Banner & Peirson (1998) used to evaluate the
model. Dotted lines are the results with variable directional spreading (see Appendix A for details).
The box indicates the range of data by Banner et al. (1989).

greater u∗, the sheltering becomes important and ks becomes smaller. The uncertainty
of ks increases rapidly as the wind friction velocity decreases below 0.2 m s−1, mainly
because the wave-induced stress in the equilibrium range becomes small compared
to the total wind stress and the stress supported by gravity–capillary waves, capillary
waves and viscosity becomes increasingly important.

Figure 5 shows by solid lines the upper and lower bounds of B(k) given by (3.20)
versus k at three different wind friction velocities. At the lowest friction velocity
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Figure 6. Upper and lower bounds of Φ(σ)/gu∗σ−4 versus σ. Numbers on lines correspond to
values of u∗ in m s−1. Hence, the two lines with the same number indicate the spread resulting from
the spread in the correlation of Banner & Peirson (1998) used to evaluate the model. The vertical
line indicates the range given by Phillips (1985).

of 0.2 m s−1 where ks is relatively large, B(k) increases as k1/2, consistent with the
model by Phillips (1985). As the friction velocity increases and ks decreases, the slope
of B(k) gradually decreases from k1/2 to k0 at higher wavenumbers. Therefore, it
approaches the form of the equilibrium wavenumber spectrum suggested by Belcher
& Vassilicos (1997). Banner et al. (1989) find from their measurements that B(k)
is almost independent of wavenumber and wind stress, when the wavenumber lies
between k = 4 and 31 rad m−1 and for wind speeds between 7 and 13 m s−1 (so that
the friction velocity lies between 0.17 and 0.44 m s−1). Their data yield a value of
B(k) between 0.002 and 0.008 with the average value of about 0.004. We show the
range of the degree of saturation observed by Banner et al. (1989) by a square box
in figure 5. The values from the model are in agreement over the range of friction
velocities observed, which is remarkable given the assumptions made to estimate u∗1
in the model. The model does predict that B(k) increases slightly with k and with u∗,
so that once the friction velocity has reached 0.8 m s−1 the values of B are significantly
higher than at 0.5 m s−1. Clearly, further observations are required to validate these
aspects of the model. Dotted lines in figure 5 are the results obtained numerically
when the directional spreading varies with wavenumber, as discussed in Appendix A.
It is clear that qualitatively the results are unchanged, and that even quantitatively
the results change by only 15–20%.

Figure 6 shows the variation with σ of the upper and lower bounds of Φ(σ)/(gu∗σ−4)
obtained from the present model for u∗ = 0.2, 0.5 and 0.8 m s−1. This form was chosen
for plotting for two reasons. First, Phillips’ (1985) model suggests that Φ(σ)/(gu∗σ−4) =
αp, a constant, and so this plot indicates the differences between the present model and
Phillips (1985). Secondly, Phillips (1985) shows that data then to hand were consistent
with his form for frequencies not too much greater than the peak in the spectrum.
The data yielded values of αp in the range 0.02–0.11 (and 0.06–0.11 for most of the
field observations). This range is marked on figure 6. Figure 6 shows that Φ(σ) varies
nearly as σ−4 at lower frequencies and at low friction velocities, so that in this respect
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Figure 7. Degree of saturation B(k) at k = k1 = 100 rad m−1 versus friction velocity u∗. Solid and
dashed lines are upper and lower bounds estimated in this study. Dashed lines indicate extended
part of the estimates outside the wind speed range given by Banner & Peirson (1998). Dash-dot
lines are upper and lower bounds estimated by Phillips (1985), with the empirical coefficient αp set
to be between 0.02 and 0.11 based on comparison with observational data near the spectral peak.
Observational data: ◦, Jähne & Riemer (1990), in a wind wave tank; ∗, Hara et al. (1998), off
California; +, Hara et al. (1998), off Cape Hatteras; ×, Hara et al. (1994), off Cape Cod.

the present model agrees with Phillips, as expected. In addition, the value obtained
for Φ(σ)/(gu∗σ−4) from the present model lies within the range suggested by the data
analysed by Phillips. At higher frequencies, and for stronger winds, the model curves
deviate significantly downwards so that Φ(σ) approaches σ−5. This tendency is in
qualitative agreement with the tendencies found in the data of Forristall (1981).

As a final comparison with data, figure 7 shows the upper and lower bounds
of the degree of saturation B(k) at k = k1 = 100 rad m−1 versus the wind friction
velocity u∗. Also shown are previous laboratory and field observations. In addition,
the upper and lower bounds of the Phillips’ (1985) spectrum are indicated by dash-dot
lines, with the parameter αp chosen to be 0.02–0.11 to match the field observations
near the spectral peak. Since Phillips’ (1985) spectrum decays more slowly with k
than our model, if extended to k = 100 rad m−1, his result becomes higher than our
prediction.

The present model suggests that B(k1) monotonically increases with u∗ in agreement
with the data. Although the data do appear to lie slightly below the model at the higher
u∗, the agreement is much improved compared to Phillips (1985) who significantly
overestimates the high wavenumber end of the equilibrium spectrum. The uncertainty
in the model is large below u∗ = 0.2 m s−1, because the correlations described above
and used here for u∗0 and u∗1 have large uncertainty in this range. The observational
data also scatter widely below u∗ = 0.2 m s−1. This is probably because at lower winds
the stress supported by gravity–capillary waves, capillary waves, and viscosity becomes
more important than the stress supported by gravity waves in the equilibrium range.
Since the former varies widely at low winds because of its sensitivity to surfactants
and other environmental conditions (e.g. Hara et al. 1998), it modifies the overall
stress partitioning and increases the uncertainty of B(k1).
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Overall, the agreement between the present model and observations for mature seas
are good, particularly considering the assumptions introduced in determining k0, k1

and u∗1/u∗0.

5. Concluding remarks
We have developed a new analytical model for the equilibrium range of ocean wave

spectra. This work was motivated by our observation that Phillips’ (1985) model does
not satisfy overall momentum conservation at high winds. The key element of the
present model is the representation of the wind forcing, which is based on the idea,
following Makin & Mastenbroek (1996), Makin & Kudryavtsev (1999) and Belcher
(1999) that the wave growth rate at a particular wavenumber is determined not by
the total wind stress, but by the local turbulent stress, which is the total wind stress
reduced by the sheltering of longer waves.

This idea of sheltering, originally suggested by Janssen (1982), enforces total mo-
mentum conservation even at high winds, when a significant part of the wind stress
is supported by waves in the equilibrium range.

This wind forcing representation is introduced to the dynamical framework for the
equilibrium range set out in Phillips (1985), which requires the following approxima-
tions:

(i) The wave field is a superposition of linear waves.
(ii) The terms in the wave action equation representing wind forcing, nonlinear

interaction and dissipation are all of the same order of magnitude and are proportional
to one other.

(iii) The nonlinear interaction term is proportional to the cube of the local wave
spectrum in the equilibrium range.

Combination of these assumptions yielded an integral equation for the local friction
velocity, ul∗(k), which here was solved analytically. In particular, we identified the
sheltering wavenumber, ks, above which sheltering reduces the local turbulent stress,
ul∗(k). The magnitude of ks is determined by the range of wavenumbers in the
equilibrium range and the partition of the stress across the range, expressed as
u∗1/u∗0.

The model yields analytical formulae for degree of saturation, B(k), and the fre-
quency spectrum, Φ(σ), namely

B(k) =
1

cβc
′
θ

[
1 +

(
ks

k

)1/2
]−1

, Φ(σ) =
2

cβc
′
θ

g2σ−5
[
1 +

(σs
σ

)]−1

, (5.1)

where cβ ≈ 40 and c′θ ≈ 0.5 are constants in the parameterization of the wave growth
rate. In the limit of small wavenumber and frequency or low wind stress, so that
k � ks and σ � σs, there is little sheltering. Then B(k) varies as k1/2 and Φ(σ) varies as
σ−4, just as in the model of Phillips (1985). However, the imposition of the additional
constraint that momentum is conserved fixes the values of the coefficients multiplying
these power laws, i.e. B(k) and Φ(σ) are completely determined by the model. The
coefficients vary nonlinearly with u∗, because they depend, through ks and σs, on how
stress is partitioned in the wave spectrum. At high wavenumbers and frequencies or
high wind stress, so that k � ks and σ � σs, there is strong sheltering. Then B(k)
approaches a value that does not vary with wavenumber, which is consistent with
the model of Belcher & Vassilicos (1997). This variation of B(k) from k1/2 to k0 is
consistent with the numerical results of Kudryavtsev et al. (1999). The variation of
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the frequency spectrum Φ(σ) changes from σ−4 to σ−5, a change that is seen in the
observations of Forristall (1981).

Values of B(k) and Φ(σ) have been evaluated from the model for mature seas
using the recent observations of the stress partitioning by Banner & Peirson (1998).
The results show encouraging agreement with previous field observations, particularly
at high wavenumbers and wind speeds, when the model of Phillips (1985) tends to
over-predict the spectral level.

The model yields the form of the wind input Sw to the wave action equation (1.5).
The dissipation D is assumed to be proportional to Sw , and so the functional form of
the dissipation is

D(k) ∝ gk−4

[
1 +

(
ks

k

)1/2
]−3

h(θ)3/2. (5.2)

If we then follow the argument of Phillips (1985) to define the distribution function
of breaking wave crests Λ(c) such that Λ(c) dc represents the average total length per
unit surface area of breaking fronts that have velocities in the range c to c+ dc, and
relate D(k) with Λ(c), we obtain

Λ(c) ∝ gc−4

(
1 +

c

cs

)−3

h(θ)3/2. (5.3)

In the limit of low wind or low wavenumbers, when c� cs, we recover the result
of Phillips (1985), i.e. Λ(c) decreases like c−7. However, at the high wind or high
wavenumber limit, when c� cs, Λ(c) decreases more slowly, like c−4. Hence, the
present model suggests that the breaking crests of slower (shorter) waves are less
frequent at high winds. Recent estimations of Λ(c) based on observations of white-
caps associated with short waves appear to be consistent with the model (Melville &
Matusov 2002).

It is not currently possible to make quantitative comparisons between the model
and observations of young growing seas, since neither the range of wavenumbers in
the equilibrium range nor the partitioning of stress in a growing spectrum can be
determined with sufficient accuracy. Nevertheless, qualitative estimates can be made.
Banner & Peirson (1998) estimate that for a given U10 the drag coefficient cd is
larger for young seas than for mature seas while ct remains similar. In addition,
we expect the lower bound k0 of the equilibrium range to be higher than the peak
wavenumber in younger seas. Both tend to make ks smaller in young seas. Then, the
degree of saturation B(k) is likely to be larger at a given value of k. This suggests
an interesting possibility. This process may explain the observation that under steady
wind forcing, the wave spectrum at a fixed wavenumber ‘overshoots’, i.e. it increases
with fetch or wave age until a maximum value is attained and then decreases slightly
before finally approaching the equilibrium state (Hasselmann et al. 1973). Further
measurements of both the drag and the wavenumber spectrum are required to test
these hypotheses.

The theory presented here is based on a set of assumptions. Perhaps the most
questionable is the assumption, originally introduced by Phillips (1985), that the wind
forcing, dissipation, and nonlinear interaction are of the same order of magnitude
and balance one another over the equilibrium range. An alternative assumption,
introduced by Zakharov & Filonenko (1966) and followed by Hasselmann et al.
(1973) and Kitaigorodskii (1983), is that the nonlinear interactions alone dominate
in the equilibrium range. Current observational and theoretical understanding is not
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sufficient to determine which assumption is correct, since neither the nonlinear inter-
action term nor the dissipation term can be evaluated with confidence. Currently,
the calculation of the nonlinear interaction term is based on the Boltzmann equation
for four-wave interactions in wave prediction models. Although this approach is
valid in the energy-containing range of the spectrum, it breaks down for inter-
actions between very short waves and long waves (e.g. Komen et al. 1994). Therefore,
it may well not be accurate in the equilibrium range. One possibility is a more
direct numerical calculation of the nonlinear interactions, based, for example, on
Zakharov’s (1968) equation, which may yield better understanding of the role of
nonlinear interactions in the equilibrium range. The evaluation of the dissipation
term, on the other hand, will be possible only through further observational studies
of breaking waves, since no theoretical framework exists to directly estimate the
energy dissipation due to breaking waves. In any event, the present study has aimed
to further develop the model proposed by Phillips (1985), which should help future
efforts to distinguish between the two current approaches to modelling the equilibrium
range.
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Appendix A
One of the assumptions of the present theory is that the three forcing terms are

proportional at every wavenumber k. This assumption then leads to the directional
spreading of the spectrum being proportional to h1/2(θ), where h(θ) is the directionality
of the growth rate. In the bulk of the text it was assumed for mathematical simplicity
that h(θ) remains independent of k throughout the equilibrium range. Here, we
examine how our results are modified if we relax this assumption and allow the
directional spreading to vary with k. Let us set

B(k) = B(k)f(θ; k), (A 1)

with ∫ π/2

−π/2
f(θ; k) dθ = 1, (A 2)

where f(θ; k) is the directional spreading function that may vary with k. Let us
assume that the directionality of the growth rate h(θ) is independent of the directional
spreading f(θ; k) and that the proportionality of the three forcing terms is applied
only after each forcing term is integrated in all angles. Then, (3.8) is modified to∫ π/2

−π/2
βg(k)g1/2k−9/2B(k) dθ =

∫ π/2

−π/2
αgk−4B3(k) dθ, (A 3)

and B(k) is related to ul∗ as

B(k) =

[
cβ

α

ρa

ρw

k

g
(ul∗)

2c4(k)

]1/2

, (A 4)
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with

c4(k) =

∫ π/2

−π/2
hf dθ∫ π/2

−π/2
f3 dθ

. (A 5)

It is straightforward to show on differentiation that the integral equation, (3.12),
becomes

2ul∗
dul∗
dk

= −c1(u
l
∗)

3k−1/2c5(k), (A 6)

where

c1 =

(
ρa

ρw

)1/2

cβ
3/2α−1/2cθg

−1/2 (A 7)

c5(k) =

∫ π/2

−π/2
hf cos θ dθ∫ π/2

−π/2
h3/2 cos θ dθ

(c4(k))
1/2 . (A 8)

Therefore, the only modification to the integral equation is the coefficient c5(k)
multiplied on the right-hand side. The coefficient c5 is not very sensitive to the choice
of the directional spreading function. For example, if we keep h(θ) = cos2 θ as before
and set the directional spreading function as

f(θ) =
cosp θ∫ π/2

−π/2
cosp θ dθ

, (A 9)

and vary p from 0 to 2, the coefficient c5 increases from 0.8003 at p = 0 (uniform
directional spreading) to 1 at p = 1 (the original assumption), and then decreases
slightly to 0.9918 at p = 2.

We now examine here how the results for the equilibrium spectrum of mature seas,
presented in § 4, are modified if the directional spreading gradually widens with k
through the equilibrium range. As discussed earlier, Donelan et al. (1985) report that
directional spreading not far from the spectral peak can be described as sech2(1.24θ),
which falls roughly between cos θ and cos3 θ. We therefore choose a form for the
spreading that is similar to Donelan et al. at low k and then broadens to the most
extreme form, namely omni-directional at large k. The directional spreading function,
(A 9), is then

p = 2

(
1− log k − log k0

log k1 − log k0

)
. (A 10)

Then, the spreading, f, at k0 is proportional to cos2 θ, and at k1 becomes independent
of θ, so that the spreading is uniform around all angles. With this choice of f(θ; k)
the integral equation, (A 6), is solved numerically for ul∗ with the same boundary
conditions at k0 and k1 as in § 4. The result is then introduced to (A 4) to solve for
B(k). In figure 5 the results of B(k) with this variable directional spreading are shown
by dotted lines and are compared with the original results (solid lines) with fixed
directional spreading. It is seen that the qualitative characteristics of the solutions are
unchanged, that is, the solutions still exhibit transition from k1/2 dependence at low
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wavenumber/wind to k0 dependence at high wavenumber/wind. The only noticeable
quantitative difference is that B(k) is increased by 15–20% at high k.

This calculation suggests that the analytical results, which assume that the spreading
does not change with k are qualitatively unaffected and are only slightly modified
quantitatively if the directional spreading does vary with k over the equilibrium
range.
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